We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.

ShmoopTube

Where Monty Python meets your 10th grade teacher.

Search Thousands of Shmoop Videos


AP Physics 1 Videos 69 videos

AP Physics 1: 3.3 Changes and Conservation Laws
192 Views

AP Physics 1: 3.3 Changes and Conservation Laws. What is the difference in work done?

AP Physics 1: 3.5 Changes and Conservation Laws
177 Views

AP Physics 1: 3.5 Changes and Conservation Laws. Which of the following would increase the rate at which the plate spins?

AP Physics 1: 2.4 Changes and Conservation Laws
172 Views

AP Physics 1: 2.4 Changes and Conservation Laws. Which of the following circuits should the students use?

See All

AP Physics 1: 2.2 Changes and Conservation Laws 183 Views


Share It!


Description:

And now, the moment you've all been waiting for: a stuntwoman refuses to do a stunt and does math problems instead! (The crowd goes wild).

Language:
English Language

Transcript

00:02

All right well here's your shmoop du jour brought to you by hoops. Back in

00:06

the day kids used to play a game by making a hoop roll along the ground by hitting [Child hitting a hoop along the ground]

00:09

it with a stick and we're really happy we didn't live back in the day.. it was really boring... [Man uses his mobile phone]

00:14

A 60kg ball is dropped from a platform, passes through a hoop and then

00:19

it hits the ground. If the platform is 30 meters above the ground and the hoop is

00:24

10 meters above the ground about how fast is the ball falling when it passes

00:29

through the hoop? Our choices are 10,15, 20, 25 meters a second. All right well

00:35

there are different ways to figure this question out, we could use kinematics for

00:38

example or we could actually build this whole set up and break out a radar gun [Picture of a tower that has a hoop attached to the front]

00:43

any policeman around?.. Well that sounds like a lot of work all that including

00:47

the cops. But just having a ball through a hoop isn't that exciting, [Speed gun measures how fast the ball falls through the hoop]

00:51

instead of just a plain old ball let's make this about a high diver and let's

00:55

set that hoop on fire, all right now our diver has to fall through the flaming [Diver appears at the top of the tower and the hoop is now on fire]

01:00

hoop of doom and jump into this tiny pool of water. There you go that's better...

01:04

We'll model this divers motion using conservation of energy, while she's up on

01:09

the platform preparing for her death-defying leap the diver only has [A person bungee jumps from a bridge]

01:12

potential energy, with that good old equation mass times gravity times height.

01:17

When we plug in the numbers and do the math we find the potential energy to be

01:22

18,000 joules. Now once she's actually falling and

01:26

reaches the height of the hoop we can look at a combination of kinetic and [Diver jumps at stops at the flaming hoop]

01:30

potential energy, well the total energy aka mechanical energy still has to

01:34

equal 18 thousand joules. Figure out the potential energy slice of this pie

01:38

first. We're using the same equation and the same numbers except the height has [People take slices of pizza]

01:42

changed so now the potential energy is 6,000 joules, we subtract that number

01:47

from the mechanical energy to find the kinetic energy and we get 12,000 joules.

01:52

Well kinetic energy equals one-half mass times the square of velocity, we know the

01:58

mass and we know the kinetic energy so we can just solve for velocity. Multiply

02:02

each side by 2 and then divide each side by 60 and find that V squared equals 400

02:07

meters a second and when we take the square root of that 400 meters a second

02:12

we end up with a velocity of 20 meters a second also known as

02:16

answer C. When we're dealing with falling objects like this we can use the

02:20

potential energy as a starting point to solve all sorts of variables. We just [Man dodges big boulders falling from above him]

02:25

have to remember how to calculate it and how it relates to mechanical energy and

02:29

kinetic energy. Now we're going to go play with our new favorite app it's

02:33

called 'hoopster', you control a kid from way back who's rolling a hoop along the

02:38

ground with a stick, yeah isn't modern technology great... [Some playing the 'hoopster' game on their phone]

Related Videos

AP Physics 1: 2.5 Changes and Conservation Law
445 Views

AP Physics 1: 2.5 Changes and Conservation Law. At what point(s) in this situation is energy lost in any form?

AP Physics 1: 1.4 Waves
181 Views

AP Physics 1: 1.4 Waves. Which of the following is technically true for Max as he stands at the edge of oblivion? 

AP Physics 1: 1.4 Changes and Conservation Laws
177 Views

AP Physics 1: 1.4 Changes and Conservation Laws. Find the current across R2.

AP Physics 1: 2.4 Changes and Conservation Laws
172 Views

AP Physics 1: 2.4 Changes and Conservation Laws. Which of the following circuits should the students use?

AP Physics 1: 1.5 Waves
12 Views

AP Physics 1: 1.5 Waves. What can possibly occur when the two waves reach each other?